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Many progressive disorders are characterized by unclear or transient diagnoses for specific subgroups of
patients. Commonly used supervised pattern recognitionmethodologymay not be themost suitable approach
to deriving image-based biomarkers in such cases, as it relies on the availability of categorically labeled data
(e.g., patients and controls). In this paper, we explore the potential of semi-supervised pattern classification to
provide image-based biomarkers in the absence of precise diagnostic information for some individuals. We
employ semi-supervised support vector machines (SVM) and apply them to the problem of classifying MR
brain images of patients with uncertain diagnoses. We examine patterns in serial scans of ADNI participants
with mild cognitive impairment (MCI), and propose that in the absence of sufficient follow-up evaluations of
individuals with MCI, semi-supervised strategy is potentially more appropriate than the fully-supervised
paradigm employed up to date.
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Introduction

High-dimensional pattern classification has gained significant atten-
tion in recent years, and has been found to be a promising technique for
capturing complex spatial patterns of pathological brain changes
(Davatzikos et al., 2009; Fan et al., 2008c; Vemuri et al., 2009; McEvoy
et al., 2009; Hinrichs et al., 2009; Duchesne et al., 2010; Kloppel et al.,
2008). Importantly, pattern classification methods have begun to
provide tests of high sensitivity and specificity on an individual patient
basis, in addition to characterizing group differences. As the result, these
methods can potentially be used as diagnostic and prognostic tools.
Pattern classification approaches were shown to work particularly well
in the task of classifying patient populations from normal cohort in
various clinical studies (e.g., Alzheimer's (Duchesne et al., 2010; Fan
et al., 2008a; Kloppel et al., 2008;Misra et al., 2009), autism (Ecker et al.,
2010), schizophrenia (Fan et al., 2008b), etc.).

The state-of-the-art brain image classification methods work by
learning a classification function from a set of labeled training examples,
and then apply the learned classifier to predict labels of the test
data. These methods belong to the family of supervised classification
approaches and assume that the labels for all training data are available.
Depending on the machine learning method applied, there are many
different classification functions that separate a given pair of classes.
Support vector machines (SVM) have been shown to provide high
classification accuracy, and are among themostwidely used classification
algorithms in the brain MRI classification literature (Fan et al., 2008a;
Kloppel et al., 2008;Misra et al., 2009; Ecker et al., 2010; Fan et al., 2008b).
However, many disorders, especially progressive ones, are characterized
by uncertain or transient diagnoses for specific subgroups of patients. For
example, one might be interested in classifying subjects with mild
cognitive impairment (MCI) into classes that either exhibit or do not
exhibit future convergence to Alzheimer's disease (AD). Unfortunately,
many subjects are likely to have insufficient follow-up studies to be called
converters or non-converterswith high confidence. Training a supervised
classifier in the scenarios where diagnoses (i.e., labels) are uncertain or
unavailable may not be appropriate. Semi-supervised classification
approaches are specifically designed to handle cases where only part of
thedata is labeled. These approaches simultaneouslyuseboth labeledand
unlabeled data to infer a classifier that provides good classification of the
unlabeled data into the two classes.

Semi-supervised SVM (Vapnik, 1998) extend the theory of
traditional SVM to the case of partially labeled datasets, and offer
both the accuracy of traditional SVM, and the ability to use unlabeled
data to learnmore reliable classification functions. Additionally, semi-
supervised SVM have been shown to be more efficient than the
traditional SVM in problems with a small number of labeled examples
(Joachims, 1999). One of the reasons why semi-supervised SVM
learning can benefit from unlabeled data is that unlabeled data can
sification of medical images: Application to mild
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help the classifier better learn the structure of the manifold on which
image samples lie. A schematic example of one of the benefits that
consideration of unlabeled data provides is depicted in Fig. 1. While a
fully-supervised classifier can be constructed to separate labeled
points as in Fig. 1(a), it fails to generalize well if the actual distribution
is more complex than the distribution of the labeled instances (i.e.,
Fig. 1(b)). In contrast, semi-supervised SVM considers both labeled
and unlabeled data, and may be more appropriate in the scenario
where the labeled population does not entirely reflect the structure of
the data.

The application focus of this paper is on Alzheimer's Disease (AD).
The incidence of Alzheimer's Disease (AD) doubles every 5 years after
the age of 65, rendering the disease the major cause for dementia, as
well as a very important health and socioecomic issue, particularly in
view of increasing life expectancy (Bain et al., 2008; Hebert et al.,
2001). Although most currently approved treatments are symptom-
atic and do not directly slow AD pathology progression, it is
anticipated that new disease modifying treatments will be available
in the near future. It is also expected that treatment decisions will
greatly benefit from diagnostic and prognostic tools that identify
individuals likely to progress to dementia sooner. This is especially
important in individuals with mild cognitive impairment (MCI), who
present a conversion rate of approximately 15% per year.

The task of predicting short term conversion to AD from MCI has
been addressed in the past with the help of fully supervised
techniques that aim at deducing a decision function from a set of
labeled images (e.g., normal control, AD, MCI-Converters, etc.)
(Duchesne et al., 2008; Fan et al., 2008a; Kloppel et al., 2008; Misra
et al., 2009). However populations of individuals with MCI are highly
heterogeneous. Previous studies suggest that some MCIs are close to
AD and will convert soon, whereas some will remain stable for over a
decade. Moreover, while some individuals with MCI may convert at a
faster rate than others to AD, some will never develop AD and others
may develop other forms of dementia. At the same time, some
individuals might be labeled with relatively higher reliability. For
example, AD patients are undoubtedly converters, as well as normal
control subjects are non-converters. Semi-supervised SVM do not
make use of uncertain labels when building a classification function,
but rather attempt to separate unlabeled data into two classes in such
a way that the heterogeneity of the data is disentangled, and that the
classifier agrees with the reliably labeled part of the data. As the result,
Fig. 1. Benefits of semi-supervised SVM. (a) Fully supervised classifier (represented by a d
(b) Semi-supervised classifier (represented by a dashed circle) considers unlabeled data po
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classification of MCI populations is likely to benefit from the semi-
supervised SVM.

In this paper, we explore the potential of semi-supervised pattern
classification to provide image-based biomarkers of progressive
disorders in the absence of certain diagnostic information for some
patients. We present a general framework that allows to detect
patterns of brain pathology using a high-dimensional semi-super-
vised pattern classification method that is not biased by the uncertain
information about the subjects' current diagnoses. We apply our
approach in the ADNI study, and investigate patterns of brain atrophy
that are characteristic of AD-like MCI, and which often predict
conversion to AD.

Methods and materials

Methods

Semi-supervised SVM
In the two-class classification scenario, the task of classifying images

into two classes (e.g., patients vs. controls) can be viewed as the task of
finding a decision function that separates the two classes in a high-
dimensional space. Traditional linear SVM algorithm (Vapnik, 1995)
finds this decision function as the separating hyperplane with the
largest margin, where the margin is the distance from the separating
hyperplane to the closest training examples. Given a set of points (i.e.,
images)X = x1;…; xnf g, and their respective labels {y1,…,yn}, the task
of finding a separating, i.e., classification, function f(x)=wTx+bwithin
the framework of traditional linear SVM could be formulated as the
following optimization problem:

min
w;b;ξ

1
2
wTw + β∑

n

i=1
ξi

s:t: yi wTxi + b
� �

≥1−ξi;∀i = 1;…;n

ξi ≥ 0;∀i = 1;…;n

ð1Þ

where the slack variables ξi are introduced to allow some amount of
misclassification in the case of non-separable classes, and constant β
implicitly controls the tolerable misclassification error. Fig. 2(a)
shows a simplified example of the supervised SVM for a two-
dimensional problem. Training examples that lie on the margin define
ashed line) does not consider unlabeled data, and separates only the labeled points.
ints, and may have a better generalization ability.
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Fig. 2. Supervised and semi-supervised SVM. (a) Traditional supervised SVM classification for the simplified case of only two variables. Each symbol represents a brain image. The
dashed line represents the hyperplane that correctly classifies the two classes and has the largest margin. All training points must have associated labels; (b) In the semi-supervised
SVM, part of the data is unlabeled. The task of semi-supervised SVM is to assign unlabeled points into one of the two classes in such a way, that the resulting classes can be separated
by a hyperplane with a large margin.
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the decision boundary and are called support vectors. A more detailed
description of the SVM can be found in Burges (1998). Notice, that the
supervised SVM formulation assumes that labels for all training points
are available during training.

Semi-supervised SVM, originally introduced as Transductive SVM
(TSVM) (Vapnik, 1998), build upon the theory of SVM and consider
partially labeleddatasets.GivenasetofpointsX = x1;…; xl; xl+1;…; xnf g,
where the first l points in X are labeled as yi∈{−1,+1} and the labels
yj∈{−1,+1} of the remaining u=n− l points are unknown, the task of
finding a separating function within the framework of semi-supervised
SVM could be formulated as follows:

min
yl+1 ; :::;yn

min
w;b;ξ

1
2
wTw + βl∑

l

i=1
ξi + βu ∑

n

j= l+1
ξj

s:t: yi wTxi + b
� �

≥1−ξi;∀i = 1;…; l

yj wTxj + b
� �

≥1−ξj;∀j = l + 1;…;n

ξi ≥ 0; ξj ≥ 0;∀i = 1;…; l;∀j = l + 1;…;n

ð2Þ

where constants βl and βu reflect prior confidence in labels (y1,…,yl)
and in the separability of the unlabeled data points, respectively. A
simplified example of the semi-supervised SVM is shown in Fig. 2(b).
In the figure, both labeled and unlabeled data points take part in
estimating the optimal separating hyperplane. In the context of semi-
supervised SVM, the optimal hyperplane has to both separate the
labeled points, as well as to separate unlabeled points into the two
classes with a large margin. In our experiments, the two labeled
subsets were represented by normal and AD subjects, while MCI
subjects were considered to be unlabeled, as they cannot be clearly
categorized into “healthy” or “diseased”, and in addition they
represent a highly heterogeneous and mixed population. Next, we
describe a framework that utilizes semi-supervised SVM to classify
patients with MCI.

Semi-supervised pattern classification: case of MCI
Follow-up evaluations of patients with MCI indicate that a number

of them may convert to AD shortly after the baseline evaluation took
place. Participants that have not yet converted to AD are usually
labeled as non-converters. A classifier can potentially be constructed
to classify converters and non-converters using the conversion
information as it was done in Misra et al. (2009). A significant
drawback of such approach lies in the fact that a large number of
subjects that have not converted to AD at the time of most recent
Please cite this article as: Filipovych, R., Davatzikos, C., Semi-supervi
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evaluation may convert in the future. Under these circumstances, a
semi-supervised approach is more appropriate, as it is designed to
handle cases where labels are provided for only part of the data. In our
approach, brain MRI images of normal and AD subjects serve as
labeled information, andMCI subjects are unlabeled. The task of semi-
supervised SVM is then to find a classifying function that both
separates AD patients from normal subjects, and provides grouping of
MCI patients into normal-like and AD-like.

Themain steps of our approach are summarized in Fig. 3 and are as
follows:

1. Input. The input to the semi-supervised pattern classification
approach consists in part of the base-line images of normal and
AD subjects with their respective labels. Additionally, base-line
images of MCI subjects are considered to be unlabeled and
constitute another part of the input. All images were processed
as described below in the Materials section of this paper.

2. Leave-one-out semi-supervised classification. We employed a leave-
one-out (LOO) scheme for classifyingMCI subjects into AD-like and
normal-like classes. LOO cross-validation allows to obtain a
prediction result that is likely to generalize to an independent
data set. The LOO semi-supervised classification procedure of our
method has the following components:
• At every run of leave-one-out procedure we remove one subject
from the labeled population (i.e., AD or normal).

• In order to reduce the dimensionally of the data, we employ the
interest region detection approach developed by Fan et al.
(2007). Their method constructs spatial patterns of brain regions
that are good discriminators between AD and normal popula-
tions. The interest region detection method works by extracting
a set of candidate features, and by employing a Support Vector
Machine-Recursive Feature Elimination (SVM-RFE) technique to
rank computed features according to their effect on the leave-
one-out error bound. The procedure in Fan et al. (2007) accepts
images of normal and AD subjects together with their respective
labels, and estimates a set of brain regions that are discriminative
of AD.

• With discriminative regions at hand, we extract features at the
detected regions from the images of normal, AD and MCI
subjects. For a given region, a feature descriptor is extracted by
calculating the mean tissue density value in that region. This
procedure allows to obtain feature-vector representation of
original images, and to reduce the dimensionality of the data to
about a hundred dimensions.
sed pattern classification of medical images: Application to mild
age.2010.12.066

http://dx.doi.org/10.1016/j.neuroimage.2010.12.066


Fig. 3. Flowchart of our approach: case of MCI. The input consists of images of normal and AD subjects with their respective labels, and of unlabeled images of MCI subjects. A leave-
one-out (LOO) scheme is employed to obtain labels of MCI subjects cross-validated with respect to the labeled data. At each run of the LOO procedure, all but one labeled images are
used to detect regions that provide good separation between normal and AD subjects. These regions are used to obtain feature-vector representation of images of normal, AD, and
MCI subjects. A linear version of semi-supervised algorithm is then used to obtain labels of the MCI subjects. Finally, a voting scheme is employed to obtain labels for MCI subjects
aggregated over all runs of the LOO procedure.
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• Finally, during a given run of leave-one-out procedure, the
feature-vectors extracted from the images together with the
labels of the respective AD and normal subjects serve as the
input to the linear semi-supervised SVM algorithm. We
implemented the semi-supervised SVM learning procedure
described in Zhao et al. (2008). The learning algorithm in Zhao
et al. (2008) represents the original non-convex problem (2)
with a set of nested convex subproblems, and in this way allows
for an efficient approximation of the solution to the semi-
supervised SVM. MCI subjects that are classified into the same
class as the majority of labeled AD patients (i.e., have positive
labels) are deemed to be AD-like. Similarly, MCI subjects that are
classified into the same class as the majority of normal subjects
(i.e., have negative labels) are deemed to be normal-like.

3. Obtain final assignment. At every run of the leave-one-out
procedure we obtain labels that may be slightly different for
different runs. In order to obtain reliable labels for the MCI subjects
we employ the following voting procedure: The final label for a
given subject is assigned to be the one that corresponds to the
majority of the labels obtained for the subject during all runs of
leave-one-out procedure. For a given subject, this final label
indicates whether the subject's brain has AD-like or normal-like
structure.

In addition to the labels for the MCI subjects, each run of the leave-
one-out procedure allows to obtain the value of the classification
function for every MCI patient. This score is equal to the value of the
classification function for the specific patient and serves as a biomarker
of AD-like brain atrophy patterns. A larger value of the classification
function indicates higher similarity to AD for the respective brain's
structure. Averaging values of the classification function over all runs of
LOO allows to obtain a stable value of the biomarker of AD for eachMCI
patient.

Note that, special care may need to be taken in order to reduce the
effect of potentially miscalibrated values of the classification function
between cross-validation folds, which can be addressed by converting
the classification values to pseudo-probabilities as in Platt (1999). We
analyzed if assigning final labels based on the sign of the average value
of the classification function has a different result than the label-
voting performed across cross-validation folds. There was no
significant difference in the final labels obtained with any of the
two approaches, with only 3% of the final labels being different.
Please cite this article as: Filipovych, R., Davatzikos, C., Semi-superv
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Finally, while the above semi-supervised procedure is provided for
the problem of classifying MCI subjects, it is in fact general, and can be
applied to other studies where there is uncertainty in diagnoses for
some individuals.

Materials

Alzheimer's Disease Neuroimaging Initiative (ADNI)
Data used in the preparation of this paper was obtained from the

ADNI database (www.loni.ucla.edu). The goal of ADNI is to recruit 800
adults, ages 55 to 90, to participate in the research — approximately
200 normal control older individuals to be followed for 3 years, 400
people with MCI to be followed for 3 years, and 200 people with early
AD to be followed for 2 years. For up-to-date information see www.
adni-info.org.

Participants
ADNI participants with structural MR images were part of this

analysis. The AD and normal control individualswere exactly the same as
in Fan et al. (2008a), and the MCI individuals as in Davatzikos et al. (in
press), but with the addition of another threeMCI subjects. This included
63 control normal (CN) individuals (age range: 75.18±5.39), 54 AD
patients (77.40±7.02), and 242 MCI participants (age range: 74.99
±7.38), of which 68 (MCI-C, 76.22±7.20) were classified as having
undergone conversion to AD based on changes in Global CDR from 0.5 to
1. The remaining 174 MCI participants (MCI-NC: 74.49±7.41) were
classified as non-converters. TheMMSE scores (mean±std. deviation) of
MCI-NC and MCI-C at baseline were 27.15±1.93 and 25.75±2.32,
respectively. The average time interval between the baseline and the last
follow-upscanswas1.95 years. TheMMSEscores (mean±std. deviation)
of MCI-NC and MCI-C at baseline were 27.15±1.93 and 25.75±2.32,
respectively. 44.12% of MCI-C and 14.71% of MCI-NC had 1 APOE4
(apolipoprotein E) allele, while 37.93% ofMCI-C and 9.20% ofMCI-NC had
2 APOE4 alleles, respectively.We include the list of ADNI subjects used in
our experiments in the supplemental materials. We include the list of
ADNI subjects used in our experiments in the supplemental materials.

Images
The dataset included standard T1-weighted images obtained using

volumetric 3D MPRAGE or equivalent protocols with varying resolu-
tions (typically 1.25×1.25 mm in-plane spatial resolution and 1.2 mm
thick sagittal slices). Only images obtained using 1.5 T scanners were
ised pattern classification of medical images: Application to mild
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used in this study. The sagittal images were preprocessed according to
a number of steps detailed under the ADNI website, which corrected
for field inhomogeneities and image distortion, and were resliced to
axial orientation.

Image analysis
Images were preprocessed according to previously validated and

published techniques (Goldszal et al., 1998). The pre-processing steps
included: 1) Alignment to the AC–PC plane; 2) removal of extra-cranial
material (skull-stripping); 3) Tissue segmentation into graymatter (GM),
white matter (WM), and cerebrospinal fluid (CSF), using a brain tissue
segmentationmethodproposed inPhamandPrince (1999);4) Formation
of regional volumetric maps, named RAVENSmaps (Goldszal et al., 1998;
Davatzikos et al., 2001; Shen and Davatzikos, 2003), using tissue-
preserving imagewarping (Goldszal et al., 1998). RAVENSmaps quantify
the regional distribution of GM, WM, and CSF, since one RAVENS map is
formed for each tissue type. In particular, if the image warping
transformation that registers an individual scanwith the template applies
an expansion to aGMstructure, theGMdensity of the structure decreases
accordingly to insure that the total amount of GM is preserved.
Conversely, a RAVENS value increases during contraction, if tissue from
a relatively larger region is compressed to fit a smaller region in the
template. Consequently, RAVENS values in the template's (stereotaxic)
space are directly proportional to the volume of the respective structures
in the original brain scan. Therefore, regional volumetric measurements
and comparisons are performed via measurements and comparisons of
the respective RAVENSmaps. For example, patterns of GM atrophy in the
Fig. 4. Effect of unlabeled data on AD/controls classification. Evolution of leave-one-out cla
unlabeled images. Plots obtained for labeled sets of size 10 (a), and 20 (b). Equal numbers of
AD and control subjects were always assigned into the unlabeled set. Classification accurac
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temporal lobe are quantified by patterns of RAVENS decrease in the
temporal lobe in the stereotaxic space. The RAVENS approach has been
extensively validated (Goldszal et al., 1998; Davatzikos et al., 2001) and
applied to a variety of studies (Resnick et al., 2000; Resnick et al., 2003;
Beresford et al., 2006a; Beresford et al., 2006b; Gur et al., 2005; Stewart
et al., 2006). It uses a highly conforminghigh-dimensional imagewarping
algorithm that captures fine structural details. Moreover, it uses tissue-
preserving transformations, which ensures that imagewarping absolute-
ly preserves the amount of GM, WM and CSF tissue present in an
individual's scan, thereby allowing for local volumetric analysis. In order
to minimize longitudinal “jitter noise” that can be introduced by
independently warping each person's image to the atlas, we first aligned
all scans of each individual to his/her baseline scan, via rigid registration
basedonmutual information.Wealsominimized thepotential biases that
can be introduced by reslicing and interpolation, by reslicing each scan
exactly one time. The baseline scans were resliced to be parallel to the
ACPC plane, and each follow-up was resliced in co-registration with the
ACPC aligned baseline scan of the respective participant. Only GM
RAVENS maps were used in our experiments.

Results

Effect of unlabeled data

The aim of our first set of experiments is to assess how the
presence of unlabeled data affects the classification performance of
semi-supervised SVM.
ssification accuracy for fixed number of labeled images and with increasing number of
AD and control subjects were assigned into the labeled set. Similarly, equal numbers of
y of traditional SVM using the specific number of labeled images is also provided.

sed pattern classification of medical images: Application to mild
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Effect on classification of AD and normal controls
As the diagnostic information for MCI subjects is not reliable in the

absence of long-term follow-up evaluations, the classification results
obtained for MCI cohort may be difficult to interpret. We therefore
started by analyzing the effect of unlabeled data on classification of AD
and normal controls if part of AD and control subjects are unlabeled.
No MCI subjects were considered at this point of our analysis.

Equal numbers of AD and control subjects were randomly assigned
into the labeled set. Similarly, equal numbers of AD and control
subjects were randomly assigned into the unlabeled set. The selected
labeled and the unlabeled subsets were disjoint. The plots in Fig. 4
display the evolution of leave-one-out classification accuracy for fixed
number of labeled images and with increasing number of unlabeled
images. The results are averaged for 50 different samplings of labeled
and unlabeled subsets. Plots are also shown for different combinations
of the semi-supervised SVM parameters βl and βu. Additionally, the
classification accuracy of the traditional fully-supervised SVM for the
specific number of labeled images is also shown. In our experiments,
we observed that the performance of the traditional SVM was not
significantly affected by the choice of the parameter β in Eq. (1), and,
therefore, we report the SVM classification accuracy for β=1.

The plots in the figure suggest that including unlabeled data into the
classifier may indeed improve the classification accuracy. However, it is
important to select proper semi-supervised SVM parameters. Notice,
that if the number of labeled images is not too small, then the choice of
parameterswhere βl is relativelymuch higher than βu results in a better
accuracy (i.e., Fig. 4(b)).

Intuitively, the ratio
βl

βu
reflects one's confidence that the labeleddata

describes the true data distribution. This confidence is typically higher
for larger labeled sets. We estimated the optimal ratio of the semi-
supervised SVM parameters that yields highest classification accuracy
for a given number of labeled and unlabeled images. Fig. 5 shows the
best parameter ratios estimated for the labeled sets of sizes 40, 60, and
80. The values of the optimal ratio are in the log10 scale, and βl=1 in all
experiments.

In the experiment, the larger was the number of selected labeled
images, the smaller was the maximum number of available unlabeled
images. Nevertheless, it can be inferred from Fig. 5 that the optimal
ratios are large if the number of labeled images increases. Specifically,
when the number of labeled images was 40, 60, or 80, then the
optimal ratio of semi-supervised SVM parameters was βl

βu
= 103 or

βl
βu

= 104.

Effect on classification of MCI
The populations of AD and normal controls are known to be well

separable with various approaches consistently achieving high AD/
Fig. 5. Optimal ratio
βl

βu
that yields highest classification accuracy. The values of the

optimal ratio are in the log10 scale.

Please cite this article as: Filipovych, R., Davatzikos, C., Semi-superv
cognitive impairment (MCI), NeuroImage (2011), doi:10.1016/j.neuroim
controls classification accuracy (Cuingnet et al., in press). At the same
time, sensitivity and specificity of MRI-based classification of MCI-C
and MCI-NC are relatively low. We performed a set of experiments to
understand the behavior of semi-supervised SVM in the task of
classifying MCI subjects. In this set of experiments all 242 MCI
participants formed the unlabeled set. A specific number of AD and
control subjects were randomly selected to form the labeled set. We
then estimated the accuracy of classifying the unlabeled subjects (i.e.,
MCI) into “AD-like” and “normal-like”.

The results in the previous section showed that the choice of semi-
supervised parameters where βl=1, and βu=10−3 or βu=10−4,
yields the highest accuracy of classifying AD and control subjects if the
number of labeled images increases. Fig. 6 shows the area under theROC
curve (AUC) forMCI-C/MCI-NC classification obtained for different sizes
of the labeled set, and for βu=10−3 and βu=10−4, and for βl=1.

Additionally, the plots show the results of MCI-C/MCI-NC
classification obtained by training a supervised classifier using labeled
AD and control images, and then by applying the classifier to the
unlabeled data.

The plot in Fig. 6 suggests that the semi-supervised SVM outper-
forms traditional SVM if the number of labeled images is relatively
small. However, due to the uncertainty in labels of MCI-C and MCI-NC
participants it is not possible to draw reliable conclusions about the
performance of the approach based on the results in Fig. 6. In this
respect, the results reported in Fig. 4 in the previous section better
reflect the effects of unlabeled data on the classification performance.
Next, we take a closer look at the subpopulations obtained as the
result of semi-supervised classification.

Semi-supervised classification of MCI

In our next set of experiments we considered all available to us 63
control, 54 AD, and 242 MCI participants. As in the previous section,
AD and control subjects were considered to be labeled, and MCI
subjects were unlabeled. Considering the results in Fig. 5, we set
βl=1.0 and βu=0.001, as these parameter provided consistently
relatively good classification when the number of labeled images was
large. We calculated the number of MCI subjects that converted to AD
and, at the same time, were classified as AD-like by our approach.
79.4% of all converters were classified as AD-like. The remaining 21.6%
of converters were classified as normal-like. At the same time, 51.7%
Fig. 6. Effect of unlabeled data on MCI-C/MCI-NC classification. The plot shows AUC for
MCI-C/MCI-NC classification obtained for different sizes of the labeled set, and for
different parameters βl=1, and βu=10−3 and βu=10−4. Also shown are the results
obtained by training a supervised classifier using labeled AD and control images, and
then by applying the classifier to the unlabeled data.
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Fig. 7. Representative sections with regions of relatively reduced GM in AD-like MCI compared to normal-like MCI, at baseline. FWE-corrected t-test thresholded at p=0.05. The
color-maps indicate the scale for the t-statistic.
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of non-converters were classified as normal-like, and the remaining
48.3% of non-converters were classified as AD-like. The AUC for the
MCI-C/MCI-NC classification was 0.69. Large number of AD-like non-
converters may indicate that many of the non-converters will actually
convert to AD in the future. The accuracy of the semi-supervised SVM
was similar to the accuracy of a fully-supervised classifier trained on
AD/controls subjects and applied toMCI, where 78.8% of all converters
were classified as AD-like, and 51.0% of non-converters were classified
as normal-like. Additionally, the accuracy of the semi-supervised
approach in classification of AD/controls was 82.91%, sensitivity was
79.63%, and specificity was 85.71%.

Group comparisons via voxel-based analysis
We performed a series of voxel-wise t-tests to compare the image

groups obtained as the result of our proposed semi-supervised
classification.

Normal-like MCI vs. AD-like MCI. In our first set of voxel-wise t-tests
we assessed regional differences in GM between normal-like MCI and
AD-like MCI. Fig. 7 shows the results of FWE-corrected t-test
signifying areas where GM tissue density is greater in normal-like
MCI than in AD-like MCI. The values were thresholded at p=0.05.

Several regions of relatively reduced volumes of GM in normal-like
MCI compared to AD-like MCI are evident, including the hippocam-
pus, amygdala, and entorhinal cortex, much of the temporal lobe GM
and the insular cortex (especially the superior temporal gyrus),
posterior cingulate and precuneous, and orbitofrontal cortex. The
inverse contrast in Fig. 8 shows increased periventricular gray tissue
in AD-like MCI subpopulation, likely due to leukoareosis in AD-like
MCI.
Fig. 8. Representative sections with regions of relatively reduced gray-looking tissue in norm
p=0.05. The color-maps indicate the scale for the t-statistic.
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Normal-like non-converters vs. AD-like non-converters. As we men-
tioned earlier, a large fraction (i.e., 48.3%) of MCI subjects that have
not converted to AD during the evaluation period were classified as
AD-like. Therefore, it is of interest to assess the regional differences
between AD-like and normal-like non-converters, and to verify
whether regional differences are consistent with regional differences
between AD and normal subjects reported in the existing literature.
Fig. 9 shows the representative sections obtained after applying
voxel-wise t-tests, and signifies the regions where GM tissue density
is higher in normal-like non-converters. The results show that AD-like
non-converters exhibit patterns of atrophy that are indicative of AD.
This may suggest that AD-like non-converters are more likely to
convert to AD in the future.

Additionally, the inverse contrast in Fig. 10 also shows increased
vascular pathology in AD-like non-converters.

AD-like non-converters vs. AD-like converters. Interestingly, neither
FWE-corrected t-test at pb0.05, nor non-corrected t-test at pb0.001,
showed regions of significant differences between AD-like MCI-NC
and AD-like MCI-C. This suggests that subjects with positive values of
the classification function have similar patterns of brain tissue loss,
regardless of the fact that some of them have not been diagnosed with
AD.

Correlation of classification values with age, MMSE, and APOE
Values of the classification function for MCI subjects increase with

age, indicating higher rates of AD-like structure in older individuals
(i.e., Fig. 11(a)). Correlation coefficient between values of the
classification function and age was found to be equal to R=0.36.
al-like MCI compared to AD-like MCI, at baseline. FWE corrected t-test thresholded at
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Fig. 9. Representative sections with regions of relatively reduced GM in AD-like MCI-NC compared to normal-like MCI-NC, at baseline. FWE corrected t-test thresholded at p=0.05.
The color-maps indicate the scale for the t-statistic.

Fig. 10. Representative sections with regions of relatively reduced gray-looking tissue GM in normal-like MCI-NC compared to AD-like MCI-NC, at baseline. FWE corrected t-test
thresholded atp=0.05. The color-maps indicate the scale for the t-statistic.
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Additionally, individuals with high values of the classification
function also have associated low MMSE (i.e., Fig. 11(b)). Correlation
coefficient between values of the classification function and MMSE
was found to be equal R=−0.34.

Additionally, we used measurements from follow-up evaluations
and obtained rate of change of MMSE scores for MCI subjects. AD-like
Fig. 11. Correlation of the values of the classification function with age andMMSE. (a) Correla
function values and MMSE (R=−0.34).
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MCI showed on average higher rates of decline in MMSE scores. The
(mean±std. deviation) was found to be (−1.36±2.22) in AD-like
MCI, and (−0.61±1.77) in normal-like MCI. The significance of
difference in rates of MMSE change between AD-likeMCI and normal-
likeMCI was p=0.023 as indicated by the t-test. As by the cut-off date
of our data collection the number of follow-up evaluations in ADNI
tion of classification function values and age (R=0.36); (b) Correlation of classification
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was limited, and the subjects are followed over a short period of time
(i.e., usually 2 follow-up evaluations over a period of 18 months), the
change of MMSE change is very noisy. Additional follow-up evalua-
tions will be required to obtainmore reliable rates of change ofMMSE.

While the correlation of the classification values with age and
MMSE scores was intuitive, the distribution of APOE4 alleles in the
obtained subgroups of MCI was less conclusive. In particular, 44.17%
and 8.33% of AD-like MCI had 1 and 2 APOE4 alleles, respectively,
while 35.25% and 13.11% of normal-like MCI had 1 and 2 APOE4
alleles, respectively.

Selecting labeled subjects based on extreme clinical scores

Up until now, we assumed that the labels of the labeled data (i.e.,
AD and CN) were well defined. That is, normal subjects remained
normal during the study, and the certainty in the diagnoses of AD was
very high. This may not be the case in other studies that lack certainty
in the labels. For example, in the studies of normal aging all subjects
may be normal, with different subjects exhibiting different levels of
cognitive decline (Resnick et al., 2003). To show the potential of the
semi-supervised classification in such scenarios we performed an
experiment where we considered only MCI subjects from the ADNI,
and formed labeled sets using the subjects that corresponded to the
extreme values of rates of change in cognitive evaluations. More
specifically, out of the 68 MCI-C subjects we selected 20 subjects with
the lowest slopes of the MMSE score to represent the positive labeled
subset. Similarly, out of the 174 MCI-NC subjects we selected 20
subjects with the highest slopes of the MMSE score to represent the
negative labeled subset. The remaining 202 MCI subjects were
considered to be unlabeled. Notice, that while we consider only
baseline scans, we used cognitive evaluations at the follow-ups to
calculate the slopes (i.e., rates of change) of MMSE scores. The mean
MSSE slope in the positive labeled subset was −3.73±1.54, and the
mean MSSE slope in the negative labeled subset was 1.36±1.03.

Similarly to the previous experiment, we set βl=1.0 and
βu=0.001. It is important tomention that the choice of the parameters
βl and βu was made based on the analysis of the classifier's
performance on AD/CN classification in the “Effect on classification
of AD and normal controls" section. As the result, the parameters
selection was performed on the set that is not part of the current
experiment. After performing the semi-supervised classification
within a leave-one-out evaluation scheme we found that the AUC of
the MCI-C/MCI-NC classifier was 0.69. At the same time, a fully
supervised classifier trained on the selected labeled subsets, and
applied to the unlabeled data resulted in AUC equal 0.61. Given that an
AUC of 0.5 represents classification by chance, the improvement
provided by semi-supervised approach over the fully-supervised
method is quite significant.

Discussion and conclusion

In this paper, we explored the potential of semi-supervised
approaches to classify individuals with progressive disorders in the
absence of long-term follow-up evaluations. We applied a strategy
based on semi-supervised SVM in the ADNI study, and obtained an
indicator of AD-like atrophy patterns that has good predictive power
of conversion from MCI to AD. The principal difference between our
semi-supervised approach and related fully-supervised techniques
lies in the fact that the supervised approaches assume that the
heterogeneous structure of the population is known. In the case of
MCI, these supervised approaches assume that the population of MCI
consists of MCI-converters and MCI-non-converters. In contrast, our
semi-supervised approach does not make strong assumptions about
the structure of MCI, but rather attempts to disentangle the
heterogeneity of MCI via high-dimensional pattern analysis.
Please cite this article as: Filipovych, R., Davatzikos, C., Semi-supervi
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Analysis of volumetric differences of AD-like and normal-like MCI
showed that AD-like MCI had reduced GM volumes in a number of
brain regions, including superior, middle and inferior temporal gyri,
anterior hippocampus and amygdala, orbitofrontal cortex, posterior
cingulate and the adjacent precuneous, insula and fusiform gyrus (i.e.,
Fig. 7). Moreover, pronounced was the larger size of the temporal
horns of the ventricles (i.e., Fig. 8). These results indicate that AD-like
MCI may have already reached levels of widespread and significant
brain atrophy at baseline.

Similar, albeit somewhat less severe, differences were observed
between normal-like MCI-NC and AD-like MCI-NC (i.e., Figs. 9 and 10).
These results indicate that the pathological changes in the AD-likeMCI-
NC are significantly more progressed, and that this particular group of
non-converters is likely to convert to AD in the future.

Additionally, we observed that there is no significant difference in
the patterns of atrophy in AD-like MCI-NC and AD-like MCI-C. This
suggests that the AD-like MCI share the same patterns of atrophy
regardless of the most recent conversion status. A more prolonged
evaluation of MCI-NC subjects from ADNI is required to validate the
hypothesis that AD-like MCI-NC are more likely to convert to AD.

The classification function derived from the semi-supervised SVM
was found to have relatively good sensitivity, in that almost all MCI-C
patients were classified as AD-like. Not unexpectedly, specificity was
limited. This is largely due to the short follow-up periods in this study.
Since MCI patients convert to AD at a rate of approximately 15%
annually, it is anticipated that many MCI-NC will convert to AD in the
near future. Although future studies with longer follow-up times will
refine our estimates of specificity, our results indicated that positive
values of the classification function in MCI-NC were associated with
lower MMSE scores, and with higher rates of decline in MMSE scores.

The results in Fig. 6 indicate that if the labeled subsets are formed
from the AD and CN subjects, then the semi-supervised classifier only
slightly outperforms its supervised counterpart. At the same time, if
AD and CN subjects are not available, and the labeled subsets are
formed from the MCI subjects based on the extreme rates of changes
in cognitive scores, then the difference in classification performance is
quite significant. We found that AUC of the semi-supervised classifier
was equal to 0.69, while the supervised classifier yielded AUC equal to
0.61. Overall, the MCI-C/MCI-NC classification problem is character-
ized by exceptionally low separability and difficulty, and predicting
short-term cognitive decline from baseline scans is bound to be very
limited, albeit it is largely improved by semi-supervised classification.
The large difference in performance of the classifiers can be explained
by the fact that the labeled data in the experiment in the “Selecting
labeled subjects based on extreme clinical scores" section was
selected based on the extreme values of the MMSE slopes. MMSE
scores are very noisy and are not sufficiently good indicators of
conversion to AD. As the result, the labels of the subjects in the labeled
subsets were uncertain, which may have hampered the performance
of the fully-supervised classifier. At the same time, the availability of
the unlabeled data allows the semi-supervised classifier to better
learn the manifold of MCI subjects, and hence to build a more reliable
separation function. On the other hand, if the labeled sets are formed
from AD and CN subjects, the labels of the subjects in the labeled
subsets are much more reliable, and given a sufficiently large number
of labeled subjects it is possible to obtain a fully-supervised classifier
that performs on a par with the semi-supervised approach.

As it can be seen from our experiments, the choice of the semi-
supervised SVM parameters has significant effect on the classification
performance. A possible strategy to selecting the parameters would be
to use participants with longer follow-up evaluations, and hencemore
certain labels, in the parameters optimization stage. Unfortunately,
due to the short follow-up period in the ADNI, the certainty in the
labels of MCI subjects is questionable. At the same time, some studies
such as the Baltimore Longitudinal Study of Aging (BLSA) (Resnick
et al., 2003) have the follow-up period of more than fifteen years, and
sed pattern classification of medical images: Application to mild
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therefore may allow to select a validation set with reliable ground
truth data on which the optimal parameters can be found.

Finally, we would like to comment on the AD/controls classification
performance of both traditional and semi-supervised SVM. Existing
literature suggests that differences in processingprotocols, classification
algorithms and feature selection procedures may result in significantly
different classification accuracies ranging from less than 80% in some
cases (Cuingnet et al., in press), to up to 90% in others (Misra et al.,
2009). In this respect, our AD/controls classification results are
moderate. This can be attributed in part to the fact that due to the
complexity of the semi-supervised SVM learning problem in Eq. (2), we
had to restrict our comparative analysis to linear versions of both semi-
supervised and traditional SVM.

In summary, we investigated the ability of semi-supervised
classification to address specific challenges that arise in studies of
progressive disorders and that are due to uncertainty in diagnostic
information. Themain goal of our paper was to explore whether semi-
supervised analysis of MRI data is more preferable to commonly used
fully-supervised paradigm under similar conditions. Our analysis
suggests that in some scenarios semi-supervised strategy may be
more preferable. Specifically, if the number of labeled images is small,
semi-supervised approach appears to yield higher classification
accuracy. Application of our proposed approach to the problem of
classifying MCI subjects within a short-follow-up study yielded
encouraging results. The results indicate that pathological patterns
can be accurately detected and quantified even if training information
is limited. The fact that our results agree with findings obtained using
fully supervised approaches may serve as additional computational
justification for the assumptions made by these approaches. While in
this paper we applied the semi-supervised classification approach to
the problem of identifying patterns of AD-like pathology in subjects
with MCI, our proposed framework can also be applied to analyzing
other progressive disorders. In the future we plan to further explore
the potential of semi-supervised classification in the studies of aging,
as well as in studies of other diseases.
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